An effective feature selection method based on maximum class separability for fault diagnosis of ball bearing
by Tawfik Thelaidjia; Abdelkrim Moussaoui; Salah Chenikher
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 11, No. 2, 2019

Abstract: The paper deals with the development of a novel feature selection approach for bearing fault diagnosis to overcome drawbacks of the distance evaluation technique (DET); one of the well-established feature selection approaches. Its drawbacks are the influence of its effectiveness by the noise and the selection of salient features regardless of the classification system. To overcome these shortcomings, an optimal discrete wavelet transform (DWT) is firstly used to decompose the bearing vibration signal at different decomposition depths to enhance the signal to noise ratio. Then, a combination of DET with binary particle swarm optimisation (BPSO) algorithm and a criterion based on scatter matrices employed as an objective function are suggested to improve the classification performances and to reduce the computational time. Finally, support vector machine is utilised to automate the identification of different bearing conditions. From the obtained results, the effectiveness of the suggested method is proven.

Online publication date: Wed, 03-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com