Bi-level clustering of mixed categorical and numerical biomedical data Online publication date: Fri, 02-Jun-2006
by Bill Andreopoulos, Aijun An, Xiaogang Wang
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 1, No. 1, 2006
Abstract: Biomedical data sets often have mixed categorical and numerical types, where the former represent semantic information on the objects and the latter represent experimental results. We present the BILCOM algorithm for 'Bi-Level Clustering of Mixed categorical and numerical data types'. BILCOM performs a pseudo-Bayesian process, where the prior is categorical clustering. BILCOM partitions biomedical data sets of mixed types, such as hepatitis, thyroid disease and yeast gene expression data with Gene Ontology annotations, more accurately than if using one type alone.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com