Computational model for the recognition of lower limb movement using wearable gyroscope sensor
by Tahir Hussain; Hafiz Farhan Maqbool; Nadeem Iqbal; Mukhtaj Khan; Salman; Abbas A. Dehghani-Sanij
International Journal of Sensor Networks (IJSNET), Vol. 30, No. 1, 2019

Abstract: Human activity recognition (HAR) using inertial sensors has enabled many applications in different fields, especially healthcare and biomedical engineering. In this regard, an activity recognition system is proposed using the signals of a single gyroscope sensor placed at the shank. Principal component analysis method was utilised to exclude the redundant features from the feature set. Furthermore, different classifiers such as probabilistic neural network, k-nearest neighbour (KNN) and support vector machine (SVM) were used for recognition of walking activities. K-fold cross validation and four performance parameters namely accuracy, sensitivity, specificity, and Matthew's correlation coefficient were used to inspect the performance of the recognition model. The proposed model yielded encouraging recognition accuracy of 98.7% compared to the existing activity recognition systems. It is realised that the proposed system will potentially be utilised in the control of lower limb prosthesis and be useful tool for the gait analysis applications.

Online publication date: Tue, 23-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com