Analysis of heuristic-based multilevel thresholding methods for image segmentation using R programming
by Kanniappan Suresh; Ulaganathan Sakthi
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 11, No. 2, 2019

Abstract: The conventional way in analysing image segmentation algorithms manually is difficult since it requires a lot of human effort in keeping all data for analysis. Various heuristic algorithms are bundled with Otsu's and Kapur's objective function in finding optimal fitness and quality segmentation. In this work Otsu's and Kapur's objective function are bundled with heuristics such as harmony search optimisation (HSO) and electro magnetic optimisation (EMO) to compare the solution accuracy of segmented images In order to statistically analyse such algorithms, an automated tool is developed which takes an input image of any image category under consideration and extracts the segmented fitness values and quality parameters of the image. The extracted values are stored in a central database server constrained with image type, image category, methodology and heuristic used, no of thresholds and quality parameters. The central repository information is fed into data mining and data analytic tools to statistically rank the segmentation algorithms.

Online publication date: Fri, 24-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com