Title: Non-smooth multi-objective fractional programming problem involving higher order functions
Authors: Pallavi Kharbanda; Divya Agarwal
Addresses: Department of Mathematics, Higher Education, Panchkula, India ' Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida, India
Abstract: In this paper, a new generalised class of higher order (F, α, ρ, d)-V-type I function is introduced for a non-smooth multi-objective fractional programming problem involving support functions. The newly defined class extends several known classes in the literature has been justified through a non-trivial example. In the framework of new concept, we determine conditions under which a fractional function becomes higher order (F, α, ρ, d)-V-type I function and do some computational work to substantiate the analysis. Further, we establish Karush-Kuhn-Tucker type sufficient optimality conditions and derive various duality results for higher order Mond-Weir type and Schaible type dual programs.
Keywords: multi-objective programming; (F, α, ρ, d)-V-type I function; fractional programming; nonlinear programming; efficient solution.
DOI: 10.1504/IJCSM.2019.102688
International Journal of Computing Science and Mathematics, 2019 Vol.10 No.4, pp.351 - 363
Received: 19 Sep 2016
Accepted: 31 Jul 2017
Published online: 02 Oct 2019 *