Title: Likelihood of observing transformative learning amongst profession changers: a predictive analysis

Authors: Tanuj Negi; Shashi Jain

Addresses: FLAME University, Gat No. 1270, Lavale, Off. Pune Bangalore Highway, 412115, Pune, Maharashtra, India ' Department of Management Studies, Indian Institute of Science, 560012, Bangalore, Karnataka, India

Abstract: In this paper, we explore the possibility of whether the likelihood of observing transformative learning may be predicted using information related to personal history and current and previous professions. We examine empirical data collected from a group of Indian profession changers using a machine learning method: random forest algorithm. Results indicate that the following variables play an important role in prediction: 'overall formality (previous profession)', 'community sanction (previous profession)', 'professional authority (current profession)', 'bridge course', and 'gender'. Additionally, this provides empirical support to the position that profession change may have a transformative effect. A discussion and a list of areas for further research are provided.

Keywords: transformative learning; profession change; career change; machine learning; prediction.

DOI: 10.1504/IJQRE.2022.129791

International Journal of Quantitative Research in Education, 2022 Vol.5 No.4, pp.379 - 398

Received: 26 May 2021
Accepted: 25 Jul 2022

Published online: 28 Mar 2023 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article