Title: On the non-local boundary value problem of a third order hyperbolic equation
Authors: O.S. Zikirov
Addresses: Department of Mechanics and Mathematics, National University of Uzbekistan, VUZgorodok, Tashkent, 100174, Uzbekistan
Abstract: We consider a non-local boundary value problem for the linear third order equation with hyperbolic operator in the main part. Sufficient conditions were stated to coefficients of the equation and to given functions in order that this non-local boundary value problem has a unique solution. For the proof, we use the Riemann|s method.
Keywords: boundary value problems; Goursat problem; Riemann|s function; non-local conditions; pseudo-parabolic equation; third order hyperbolic equations; Volterra integral equations; hyperbolic operators.
DOI: 10.1504/IJDSDE.2008.019682
International Journal of Dynamical Systems and Differential Equations, 2008 Vol.1 No.3, pp.205 - 209
Published online: 20 Jul 2008 *
Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article