Title: Set membership estimation theory for Wiener modelling using HLCPWL functions
Authors: Marcela P. Alvarez, Liliana R. Castro, Osvaldo E. Agamennoni
Addresses: Departamento de Matematica, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca B8000CPB, Argentina. ' Departamento de Matematica, Instituto de Investigaciones en Ingenieria Electrica (UNS, CONICET), Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca B8000CPB, Argentina. ' Departamento de Ing. Electrica y de Computadoras, Instituto de Investigaciones en Ingenieria Electrica (UNS, CONICET), Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca B8000CPB, Argentina
Abstract: In this paper, we propose a Wiener-like model structure where the dynamic linear part is represented by a finite set of discrete Laguerre or Kautz transfer functions, while the non-linear static part is realised by high level canonical piecewise linear basis functions (HLCPWL). In control applications, Laguerre functions are commonly used when dealing with overdamped systems, while Kautz systems are suitable for weakly damped ones. The approximation of the static non-linear functions using HLCPWL functions is based on that this representation uses the least number of parameters and the algorithm for computing the approximation is very efficient. In this model, we estimate the parameters of the HLCPWL using set membership estimation theory, under mild error constraints. It is shown that this structure allows to uniformly approximate any causal, time-invariant, non-linear discrete dynamic system with fading memory.
Keywords: identification; nonlinear systems; estimation theory; piecewise linear functions; set membership estimation; Wiener modelling; block oriented models; orthonormal basis functions; Kautz functions; Laguerre functions; HLCPWL functions; fading memory; discrete dynamic systems.
DOI: 10.1504/IJMIC.2011.042336
International Journal of Modelling, Identification and Control, 2011 Vol.14 No.1/2, pp.13 - 26
Published online: 21 Mar 2015 *
Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article