Title: Effect of electrochemical treatment at fresh condition in enhancing the corrosion resistance in concrete
Authors: Ki Yong Ann; Do Gyeum Kim; Ho Jae Lee
Addresses: Department of Civil and Environmental Engineering, Hanyang University, Ansan-City 426-791, Korea. ' Structural Engineering and Bridge Research Division, Infrastructure Research Department, Korea Institute of Construction Technology, 411-712, Korea. ' Structural Engineering and Bridge Research Division, Infrastructure Research Department, Korea Institute of Construction Technology, 411-712, Korea
Abstract: The present study concerns the electrochemical treatment to increase the resistance against chloride-induced corrosion of steel in concrete, which was ensured by a microscopic examination and corrosion tests. The current density (DC) applied to the embedded steel immediately after casting of concrete ranged 125, 250 and 500 mA/m² for two weeks. As a result, an increase in the current density resulted in an increase in the precipitated calcium hydroxide at the steel-concrete interface within 100 µm from the steel surface, which would enhance the buffering capacity to the corrosion reaction. However, an application of the electrochemical treatment did not always impose the benefit in raising the corrosion resistance: the surface chloride content, when the concrete specimens containing the steel embedment was exposed to a salt solution, was increased, presumably because of modification of the chemistry at the right surface of concrete. Notwithstanding, the critical chloride ranged 0.88, 1.21 and 1.76% by weight of cement for the current density of 125, 250 and 500 mA/m² respectively, while untreated specimens indicated only 0.62%. Consequently, the electrochemical treatment increased the corrosion-free life by enhancing the resistance to corrosion, resulting from the formation of precipitated calcium hydroxide at the steel-concrete interface.
Keywords: electrochemical treatment; calcium hydroxide; porosity; critical chloride content; steel corrosion resistance; concrete structures; calcium hydroxide; steel-concrete interface; chloride-induced corrosion.
DOI: 10.1504/IJSTRUCTE.2013.050769
International Journal of Structural Engineering, 2013 Vol.4 No.1/2, pp.128 - 137
Published online: 28 Jun 2014 *
Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article