Title: A correlation based stochastic partitional algorithm for accurate cluster analysis
Authors: Satyasai Jagannath Nanda; Pyari Mohan Pradhan; Ganapati Panda; Lalu Mansinha; Kristy F. Tiampo
Addresses: School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa, India ' School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa, India ' School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa, India ' Department of Earth Sciences, The University of Western Ontario, London N6A 5B7, Ontario, Canada ' Department of Earth Sciences, The University of Western Ontario, London N6A 5B7, Ontario, Canada
Abstract: Most partitional clustering algorithms such as K-means, K-nearest neighbour, evolutionary techniques use distance based similarity measures to group the patterns of a data set. However the distance based algorithms may converge to local optima when there are large variations in the attributes of the data set, leading to improper clustering. In this paper we propose a simple stochastic partitional clustering algorithm based on a Pearson correlation based similarity measure. Experiments on real-life data sets demonstrate that the proposed method provides superior performance compared to distance based K-means algorithm.
Keywords: K-means clustering; correlation clustering; clustering accuracy; clustering stability; cluster analysis; stochastic partitional clustering; Pearson correlation; similarity measures.
DOI: 10.1504/IJSISE.2013.051504
International Journal of Signal and Imaging Systems Engineering, 2013 Vol.6 No.1, pp.52 - 58
Received: 05 Feb 2011
Accepted: 11 Apr 2011
Published online: 20 Jan 2013 *