Title: Actuator requirements for an active suspension to prevent two-wheel lift-off in a severe manoeuvre

Authors: Anand Ramani

Addresses: Global General Motors R&D, India Science Lab, GM Tech Center, Bangalore 560066, India

Abstract: The force requirements and control laws for an actuator forming a part of an active suspension are derived using the framework of optimal control theory. Prevention of two wheel lift-off during a severe fish-hook manoeuvre is identified as the critical performance requirement for the actuator. The equations of motion of the vehicle equipped with the active system are used to formulate an optimal control problem with constraints on the suspension motion and various design considerations taken as objective functions. Solution of the optimal control problem yields time-dependent active suspension forces to be applied to prevent two-wheel lift-off and thus improve its road-holding capability. The influence of actuation modes, force constraints, actuator response characteristics, etc. on the nature of active force variation is studied and system level control strategies are developed.

Keywords: active suspension; anti-roll; optimal control; actuator performance; two-wheel lift-off; severe manoeuvres; vehicle suspension; fish-hook manoeuvre; equations of motion; road holding capability; vehicle design.

DOI: 10.1504/IJVP.2013.057787

International Journal of Vehicle Performance, 2013 Vol.1 No.1, pp.92 - 118

Received: 15 Jun 2011
Accepted: 07 Jun 2012

Published online: 12 Jul 2014 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article