Title: Comparison of rotation invariant local frequency, LBP and SFTA methods for breast abnormality classification
Authors: Spandana Paramkusham; Kunda M.M. Rao; B.V.V.S.N. Prabhakar Rao
Addresses: Department of Electrical Engineering, BITS Pilani – Hyderabad Campus, R.R. Dist. Hyderabad – 500078, India ' Department of Electrical Engineering, BITS Pilani – Hyderabad Campus, R.R. Dist. Hyderabad – 500078, India ' Department of Electrical Engineering, BITS Pilani – Hyderabad Campus, R.R. Dist. Hyderabad – 500078, India
Abstract: Breast cancer is the second most prominent cancer diagnosed among women. Digital mammography is one of the effective imaging modalities used to detect breast cancer in early stages. Computer-aided detection systems help radiologists to detect and diagnose abnormalities earlier and faster in a mammogram. In this paper, a comprehensive study is carried out on different feature extraction methods for classification of abnormal areas in a mammogram. The prominent techniques used for feature extraction in this study are local binary pattern (LBP), rotation invariant local frequency (RILF) and segmented fractal texture analysis (SFTA). Features extracted from these techniques are then fed to a support vector machine (SVM) classifier for further classification via 10-fold cross-validation method. The evaluation is performed using image retrieval in medical applications (IRMA) database for feature extraction. Our statistical analysis shows that the RILF technique outperforms the LBP and SFTA techniques.
Keywords: breast cancer; mammograms; masses; microcalcification; feature extraction; SVM; support vector machine.
DOI: 10.1504/IJSISE.2018.093266
International Journal of Signal and Imaging Systems Engineering, 2018 Vol.11 No.3, pp.136 - 150
Received: 09 Jan 2017
Accepted: 11 Jan 2018
Published online: 24 Jul 2018 *