Forthcoming and Online First Articles

International Journal of Advanced Intelligence Paradigms

International Journal of Advanced Intelligence Paradigms (IJAIP)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

International Journal of Advanced Intelligence Paradigms (8 papers in press)

Regular Issues

  • Big data secure storing in cloud and privacy preserving mechanism for outsourced cloud data   Order a copy of this article
    by Dr B. Renuka 
    Abstract: Big data is a buzz word in this decade it gets tremendous concentration in these days by the researchers because of the characteristics and features. And also big data gives lot of challenges to the world that is storage, processing and security. In any technology security is the prime concern in this manuscript, we map to misuse new complications of enormous information regarding security, further more, confer our thought toward viable and insurance protecting enlisting in the immense data time. Specifically, we at first formalize the general building of gigantic data examination, recognize the relating security necessities, and present a capable and assurance sparing outline for immense data which is secured in cloud.
    Keywords: Privacy Preserving; Security; Big data; Cloud Computing; outsourced data.

  • A Novel Variant of Bat Algorithm Inspired from CATD-Pursuit Strategy & Its Performance Evaluations   Order a copy of this article
    by Shabnam Sharma, Sahil Verma, Kiran Jyoti 
    Abstract: This paper presents a novel nature inspired optimization technique, which is a variant of Standard Bat Algorithm. This optimization technique is inspired from the pursuit strategy of microchiroptera bats and their efficient way of adaptation according to dynamic environment. Here dynamic environment describes different movement strategies adopted by prey (target), during their pursuit. Accordingly, bats have to adopt different pursuit strategies to capture the prey (target). In this research work, a variant of Bat Algorithm is proposed considering the pursuit strategy Constant Absolute Target Detection (CATD), adopted by bats, while targeting preys moving erratically. The proposed algorithm is implemented in Matlab. Results obtained are validated in comparison to Standard Bat Algorithm on the basis of best, mean, median, worst and standard deviation. The results demonstrate that the proposed algorithm provides better exploration and avoid trapping in local optimal solution.
    Keywords: Bat Algorithm; Constant Absolute Target Detection (CATD); Computational Intelligence; Echolocation; Meta-heuristic; Nature-Inspired Intelligence; Optimization; Pursuit Strategy; Swarm Intelligence.
    DOI: 10.1504/IJAIP.2021.10030248
     
  • Wireless Smart Automation Using IOT Based Raspberry Pi   Order a copy of this article
    by Vasu Goel, Akash Deep, Madireddy Vivek Reddy, Yedukondala Rao Veeranki 
    Abstract: In this paper we propose a smart door lock system and lighting system for home automation. This door lock system and lighting system is controlled by Radio Frequency Identification (RFID) reader which is programmed by Raspberry Pi to detect the input swipe through our university combo card or a RFID tag and wirelessly sends the signal to the Espruino (ESP) Wi-Fi module and Node Microcontroller Unit (MCU) which in turn activates the lighting system and door lock system. The mainstream application of the system will be in hostel rooms or in our homes wherever door locks are there so that doors can be opened anytime we want without disrupting our work or getting up from our places in case of any injury with a swipe of card
    Keywords: Internet-Of-Things; Raspberry pi; Radio-Frequency Identification; Home automation; MQTT.
    DOI: 10.1504/IJAIP.2019.10026853
     
  • Data Mining Techniques and Fuzzy Logic to Build a Risk Prediction System for Stroke   Order a copy of this article
    by Farzana Islam, M. Rashedur Rahman 
    Abstract: Nowadays, by using different computational system medical sector predict diseases. These systems not only aid medical experts but also normal people. In recent years stroke becomes life threatening deadly cause and it increased at global alarming state. Early detection of stroke disease can be helpful to make decision and to change the lifestyle of people who are at high risk. There is a high demand to use computational expertise for prognosis stroke. Research has been attempted to make early prediction of stroke by using data mining techniques. This paper proposes rule based classifier along with other techniques. The dataset is collected from Dhaka medical college, situated in Dhaka, Bangladesh To build a more accurate and acceptable model the system uses different classification methods likely- Decision tree, Support vector machine, Artificial neural network and fuzzy model. K-means, EM and fuzzy C-means clustering algorithm are used to label the dataset more accurately. Fuzzy inference system is also built to generate rules. ANFIS provides the most accurate model.
    Keywords: stroke; decision tree; SVM; MLP; artificial neural network; support vector machine; fuzzy model; FIS; ANFIS; data-mining; fcm; clustering; EM clustering; k-means; Bangladeshi dataset; fuzzy rule.
    DOI: 10.1504/IJAIP.2021.10054275
     
  • An optimized fuzzy edge detector for image processing and their use in modular neural networks for pattern recognition   Order a copy of this article
    by Isidra Espinosa-Velazquez, Patricia Melin, Claudia Gonzalez, Frumen Olivas 
    Abstract: In this paper, the development of a fuzzy edge detector optimized with the metaheuristics: Genetic Algorithms and Particle Swarm Optimization is presented, based on the sum of differences method, using as inputs the absolute values of the difference from the pixels in the image. The Pratts figure of merit metric was used to know the performance of the proposed fuzzy edge detector. A modular neural network was designed for the recognition of faces in benchmark images and comparisons were made with different works carried out with other fuzzy edge detection systems. The main contribution of this research work is the development of a new fuzzy edge detector method optimized.
    Keywords: fuzzy logic; fuzzy edge detector; optimization; GA; genetic algorithm; PSO; Particle swarm Optimization; Neural networks.

  • PEBD: Performance Energy Balanced Duplication Algorithm for Cloud Computing   Order a copy of this article
    by Sharon Priya Surendran, Aisha Banu W 
    Abstract: With the increasing demand of cloud data, efficient task scheduling algorithms are required with minimal power consumption. In this paper, the Performance-Energy Balanced Duplication (PEBD) scheduling approach is proposed for energy conservation at the point of task duplication. Initially, the resources are preprocessed with the Manhattan distance based Fuzzy Clustering (MFC).Then resources are scheduled using a Novel duplication aware fault tolerant based League-BAT algorithm and faults expected during job executions can be handled proactively. The fault adaptive firefly optimization is used for minimizing faults and it keeps information about resource failure. Consequently, the optimization ensures that performance is improved with the help of task duplication with low energy consumption. The duplications are restricted and they are strictly forbidden if they provide significant enhancement of energy consumption. Finally, enhanced compress & Join algorithm is used for efficient compression processing. It considers both schedule lengths and energy savings to enhance the scheduling performance with less power consumption. The performance of energy consumption and makespan for the proposed approach is increased with 6% and 0.5 % respectively
    Keywords: Manhattan distance; Fuzzy clustering; Resource scheduling; Duplication; fault tolerance; energy conservation.

  • A Community Based Trusted Collaborative Filtering Recommender Systems Using Pareto Dominance Approach   Order a copy of this article
    by Anupama Angadi, Satya Keerthi Gorripati 
    Abstract: Recommender System algorithms provided clarification to information overload problem suffered by netizens. The Collaborative Recommender Filtering approach takes the user-item rating matrix as an input and recommends items based on the perceptions of similar neighbours. However, sparsity issue in the rating matrix leads to untrustworthy predictions. However, the conventional Collaborative Recommender Filtering method chooses ineffective descriptive users as neighbours for each target user. This hints that the recommendations made by the system remain inaccurate. The proposed approach addresses this issue by applying a pre-filtering process and integrates community detection with Pareto dominance, which considers trusted neighbours from the community into which the active user pertains and eliminates dominant users from the neighbourhood. The results on the proposed framework showed a noteworthy improvement in all the accuracy measures when related to the traditional approaches.
    Keywords: Community Detection; Recommender Systems; Sparsity; Pareto dominance; Cold Start; Trust propagation;.

  • Web Server Workload Prediction using Time Series Model   Order a copy of this article
    by Mahendra Pratap Yadav, Akanksha Kunwar, Ram Chandra Bhushan, Dharmendra Kumar Yadav 
    Abstract: In distributed systems, multi-tier storage systems and cloud data-centers are used for resource sharing among several clients. To fulfill the clients request, the cloud providers share it's resources and manage the workload, which introduces many performance challenges and issues. One of the main challenges is resource provisioning in virtual machine (VMs or Container) since VMs are subjected to meet the demand of users with different profiles and Quality of Service (QoS). This proactive resource management approach requires an appropriate workload prediction strategy for real-time series data. The time series model exhibits prominent periodic patterns for the workload that evolves from one point of time to another with some short of time in random fluctuation. In this paper, a solution for the prediction of web server load problem has been proposed, which is based on seasonal ARIMA (Autoregressive Integrated Moving Average Model) model. ARIMA is a forecasting technique which predicts the future value based on its inertia. In seasonal ARIMA, seasonal AR and MA are used to predict the value xt (CPU workload time series) with the help of data values and errors at time lags that are multiple to the span of seasonality. We have evaluated our proposed method using real-world web workload data.
    Keywords: Cloud Computing; Elasticity; Auto-scaling; Time Series; Machine Learning.
    DOI: 10.1504/IJAIP.2022.10034175