DeepVeil: deep learning for identification of face, gender, expression recognition under veiled conditions
by Ahmad B.A. Hassanat; Abeer Ahmad Albustanji; Ahmad S. Tarawneh; Malek Alrashidi; Hani Alharbi; Mohammed Alanazi; Mansoor Alghamdi; Ibrahim S. Alkhazi; V.B. Surya Prasath
International Journal of Biometrics (IJBM), Vol. 14, No. 3/4, 2022

Abstract: Biometric recognition based on the full face is an extensive research area. However, using only partially visible faces, such as in the case of veiled-persons, is a challenging task. Deep convolutional neural network (CNN) is used in this work to extract the features from veiled-person face images. We found that the sixth and the seventh fully connected layers, FC6 and FC7 respectively, in the structure of the VGG19 network provide robust features with each of these two layers containing 4,096 features. The main objective of this work is to test the ability of deep learning-based automated computer system to identify not only persons, but also to perform recognition of gender, age, and facial expressions such as eye smile. Our experimental results indicate that we obtain high accuracy for all the tasks. The best recorded accuracy values are up to 99.95% for identifying persons, 99.9% for gender recognition, 99.9% for age recognition and 80.9% for facial expression (eye smile) recognition.

Online publication date: Fri, 05-Aug-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com