Rice plant diseases detection using convolutional neural networks Online publication date: Sat, 03-Dec-2022
by Manoj Agrawal; Shweta Agrawal
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 14, No. 1, 2023
Abstract: Rice is one of the main crops grown in India and it is complicated for farmers to accurately classify rice diseases manually with their imperfect information. Thus, the automatic recognition of rice plant diseases is highly desired. Many methods are available and have been proposed for the rice plant diseases detection. The latest advances indicate that the use of CNN models can be very beneficial in such troubles. In this paper we have explored and trained various CNN models with the unique combinations of training and learning methods to enhance the accuracy. The most advanced large-scale architecture, such as VGG19, XceptionNet, ResNet50, DenseNet, SqueezeNet, and CNN are implemented with the baseline and transfer learning methods. These models are trained and tested on datasets collected from various sources. Experimental results show that the ResNet50 architecture achieved the highest accuracy of 97.5% as compared to other CNN architectures and existing literature.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com