Visual segmentation of the diagnosis image of pulmonary nodules with vascular adhesion based on convolution neural network Online publication date: Thu, 02-Feb-2023
by Yingying Zhao; Chunxia Zhao; Xuekun Song
International Journal of Information and Communication Technology (IJICT), Vol. 22, No. 2, 2023
Abstract: Because of the low grey value of the background area in the diagnosis image of pulmonary nodules with vascular adhesions, the traditional visual segmentation method is weak for image feature recognition, which results in the unsatisfactory visual segmentation effect. A visual segmentation method based on convolution neural network is proposed for the diagnosis image of pulmonary nodules with vascular adhesions. Three modes are added to the original convolution neural network through the filter, and the convolution neural network is used to fuse the diagnosis image of pulmonary nodules with duct adhesion. The fusion results were processed by the fuzzy c-means method to complete the visual segmentation of the diagnosis image of pulmonary nodules with vascular adhesion. The simulation results show that the proposed method can quickly and accurately complete the visual segmentation of the diagnosis image of pulmonary nodules with vascular adhesion, and has strong adaptability.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com