Reduced complexity Volterra model of non-linear MISO system Online publication date: Wed, 17-Dec-2014
by Abdelkader Mbarek; Tarek Garna; Kais Bouzrara; Hassani Messaoud
International Journal of Modelling, Identification and Control (IJMIC), Vol. 16, No. 2, 2012
Abstract: In this paper, we propose a new dynamic non-linear MISO system model using discrete-time Volterra series. To provide a reduced complexity model, each Volterra kernel is expanded on independent generalised orthonormal bases (GOBs) associated to the inputs to develop a new black-box non-linear MISO-GOB-Volterra model. However, this reduction is ensured once the poles characterising each independent generalised orthonormal basis (GOB) are set to their optimal values. For the selection of optimal GOBs poles, we develop two new general approaches based on Gauss-Newton and exhaustive algorithms, the performances of which are illustrated and compared in simulation.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com