Thermal stress deformation prediction for rotary air-preheater rotor using deep learning approach Online publication date: Thu, 23-May-2019
by Jing Xin; Rong Yu; Ding Liu; Youmin Zhang
International Journal of Modelling, Identification and Control (IJMIC), Vol. 31, No. 4, 2019
Abstract: Failures often occur in the seal clearance measuring sensor due to the harsh operating conditions of the rotary air-preheater in power plant boilers. Therefore, it is necessary to predict the rotor deformation to eliminate the effects of failures on the gap control system. An air-preheater rotor thermal stress deformation prediction method is proposed in this paper based on deep learning. Firstly, a stacked auto-encoder (SAE) is constructed and trained to learn the feature information which is hidden within the input data (the temperature of flue gas side inlet, air side outlet, flue gas side outlet, air side inlet); then, an Elman neural network is constructed and trained using the output of the encoder part of the well trained stacked auto-encoder to predict rotor deformation. Simulation and experimental results show that the proposed SAE-Elman prediction method can obtain the effective feature representation and has better prediction precision compared with other traditional prediction methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com