Lane detection algorithm based on Hough transform for high-speed self driving vehicles
by Hyunhee Park
International Journal of Web and Grid Services (IJWGS), Vol. 15, No. 3, 2019

Abstract: This study proposes a lane detection method based on expressway driving videos through a computer vision-based image processing system without using sensors. Both straight and curved sections can occur on a road, and thus, lanes must be detected by quickly determining such sections. The proposed method detects straight and curved sections that are estimated to be lanes using the Hough transform. When lanes are detected from actual images, the scope of left and right lanes is limited to reduce computational load. In this paper, we propose a lane-detection algorithm using the colour space and a stepwise algorithm for accurate lane detection. To verify the proposed algorithms, we developed a small self-driving vehicle model using a TX-2 board. The experiment results when applying the proposed Hough transform algorithm and lane-detection algorithm using the colour space show that the lane detection rate of vehicles driving on curves at high speed is approximately 96%. Through the extensive simulation results, the proposed algorithm to vehicle black boxes or autonomous driving will help prevent lane departure and reduce accident rates.

Online publication date: Thu, 18-Jul-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web and Grid Services (IJWGS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com