Optimal trajectory design for global exploration of an asteroid via bi-impulsive transfers Online publication date: Wed, 07-Aug-2019
by Yu Shi; Hao Peng; Yue Wang; Shijie Xu
International Journal of Space Science and Engineering (IJSPACESE), Vol. 5, No. 3, 2019
Abstract: The trajectory for a global exploration of an asteroid is designed to make a comprehensive investigation of different areas. The areas to be visited are considered as target points scattered on the asteroid's surface and all the target points are supposed to be visited by the spacecraft propelled by impulsive thrusts. The trajectory of the spacecraft is optimised for fuel saving in two parts: the transfer orbit optimisation and the exploration sequence optimisation. Firstly, transfer orbits between any two target points via two impulses are optimised for fuel saving by solving a nonlinear programming problem. The solution of the Lambert problem in the gravitational field of a point mass is used as initial guesses in the optimisation. Then, with all the optimal transfer orbits determined, the exploration sequence is processed as a travelling salesman problem (TSP). Branch and bound method and greedy algorithm for solving this problem are compared. Finally, the trajectory for a global exploration of the asteroid 433 Eros is designed for a demonstration purpose.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space Science and Engineering (IJSPACESE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com