Malicious web pages detection using feature selection techniques and machine learning
by Dharmaraj R. Patil; Jayantrao B. Patil
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 14, No. 4, 2019

Abstract: In recent years, researchers have provided significant solutions to detect malicious web pages, still there are many open issues. This paper proposes a methodology for the effective detection of malicious web pages using feature selection methods and machine learning. Our methodology consists of three modules: feature selection, training and classification. To evaluate our methodology, six feature selection methods and eight supervised machine learning classifiers are used. Experiments are performed on the balanced binary dataset. It is found that by using feature selection methods, the classifiers achieved significant detection accuracy of 94-99% and above, error-rate of 0.19-5.55%, FPR of 0.006-0.094, FNR of 0.000-0.013 with minimum system overhead. Our multi-model system using majority voting classifier and wrapper+Naive Bayes feature selection method with GreedyStepwise search technique using only 15 features achieved a highest accuracy of 99.15%, FPR of 0.017 and FNR of 0.000.

Online publication date: Mon, 23-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com