Uncertain chance-constrained programming based on optimistic and pessimistic values: models and solutions Online publication date: Fri, 27-Sep-2019
by Yao Qi; Ying Wang; Xiangfei Meng; Ning Wang
International Journal of Information and Communication Technology (IJICT), Vol. 15, No. 2, 2019
Abstract: To solve the uncertainty in real decisions and overcome the limitations of random programming and fuzzy programming in application, we proposed two novel uncertain chance-constrained programming models based on optimistic and pessimistic value of uncertain variables in this paper. Firstly, the optimistic value and pessimistic value of uncertain variables were introduced as the objective functions and the chance constraints of uncertain programming were defined as constraint functions, then the optimistic value model and pessimistic value model were established. Secondly, two lemmas were proposed and proved to transform the uncertain chance-constrained programming model into an equivalent deterministic programming model. Finally, the feasibility and effectiveness of the proposed models and solutions were verified by a numerical example.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com