Anti aging controllable true random number generator for secured AES-based crypto system Online publication date: Wed, 02-Oct-2019
by Muthukumar Arunachalam; Sivasankari Narasimhan; Rampriya Kaniram
International Journal of Systems, Control and Communications (IJSCC), Vol. 10, No. 4, 2019
Abstract: A tetrahedral oscillator-based true random number generator for secret key generation in cryptosystem has been proposed. The circuit is made to behave correctly for a long time. By applying pass transistors, the aging effects due to hot carrier injection (HCI) and negative bias temperature instability (NBTI) are reduced. This fact is helpful to achieve the goal and its performances have also been improved. Pass transistor makes the transistors to operate only at enabling times. Thus, bit flipping in normal designs are reduced. Due to the complexity in the tetrahedral oscillator hacking will be very tough. The secret key generated from TRNG circuit is adopted in advanced encryption standard (AES) cryptosystem to maintain an off-chip database. Moreover, controlling circuits for TRNG have been introduced because in any of the cryptosystem man-in-middle attack is possible. To avoid this controlling circuits are used to identify the authenticity of customers. Simulation results explain that our aging resistant design can be used for generating more reliable keys. Although the operating conditions changes, the DC operating point of the system does not change more. The randomness is also shown through NIST tests.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Systems, Control and Communications (IJSCC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com