An authenticated hierarchical asymmetric group key agreement protocol based on identity Online publication date: Thu, 05-Dec-2019
by Yong Gan; Bingli Wang; Yuan Zhuang; Zengyu Cai; Qikun Zhang
International Journal of Embedded Systems (IJES), Vol. 11, No. 6, 2019
Abstract: Asymmetric group key agreement protocol is to negotiate a shared group encryption key. Each member can calculate a decryption key corresponding to the encryption key. With the rapid development of network and system technology, secure information exchange has been one of the foci. In this paper, we propose an authenticated hierarchical asymmetric group key agreement protocol based on identity. Based on the realisation of a round of asymmetric group key agreement, the protocol carries out a second round of agreement. Different levels of secrets exchange information between a group of players with different permissions as the number of rounds increases, which can achieve anonymity and authentication and support dynamic group key updating of nodes to achieve forward and backward security of group key. The protocol proved to be secure under the assumption of bilinear computational Diffie-Hellman problem. The performance analysis shows that the proposed scheme is efficient.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com