Adaptive online successive constant rebalanced portfolio based on moving window
by Jin'an He; Xingyu Yang; Hong Lin; Yong Zhang
International Journal of Industrial and Systems Engineering (IJISE), Vol. 34, No. 1, 2020

Abstract: In the non-stationary financial market, considering that earlier observations may have little or no relevance to the current investment decision making, we design two kinds of adaptive online portfolio strategies only based on recent historical data. Firstly, we design an adaptive online portfolio strategy by linearly combining the last portfolio and the best constant rebalanced portfolio corresponding to the recent historical data, which we call moving window. We determine the length of the moving window by adaptive learning. More precisely, we consider the strategies that always adopt the best constant rebalanced portfolio corresponding to the moving window of different fixed lengths as different experts, and at the beginning of the current period, we choose the length of moving window the same as the expert achieving maximum current cumulative return. Furthermore, we determine the length of moving window by only using the recent historical data to adaptively learn, and design another adaptive online portfolio strategy. We present numerical analysis by using real stock data from the US and Chinese markets, and the results illustrate that our strategies perform well, compared with some benchmark strategies and existing online portfolio strategies.

Online publication date: Fri, 03-Jan-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com