On ergodicity of Markovian mostly expanding semi-group actions
by A. Ehsani; F.H. Ghane; M. Zaj
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 10, No. 1, 2020

Abstract: We consider finitely generated semigroup actions on a compact manifold and discuss their ergodic properties. We introduce Markovian mostly expanding semigroups and show that each C1+α Markovian mostly expanding semigroup action is ergodic (with respect to the Lebesgue measure) whenever it is strongly tranitive. Moreover, it is proved that each Markovian mostly expanding semigroup is non uniformly expanding. Our approach provides a large class of non-uniformly expanding semigroups.

Online publication date: Thu, 06-Feb-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com