Performance analysis of intrinsic embedded evolvable hardware using memetic and genetic algorithms
by Ranjith Chandrasekharan; S.P. Joy Vasantha Rani
International Journal of Bio-Inspired Computation (IJBIC), Vol. 15, No. 1, 2020

Abstract: This paper discusses the performance analysis of memetic and genetic algorithms (GA and MA) as the optimising strategy for the design of embedded evolvable hardware. The optimisation algorithm with the fitness evaluation searches for the best configuration to evolve the hardware model. Here, an experimental setup is carried to intrinsically evolve combinational circuits to test the performance of MA and GA. The complete evaluation and evolution is built on a single Virtex 6 (XC6VLX240T-1FFG1156) ML605 Evaluation Kit FPGA. A virtual reconfigurable architecture (VRA) with the hardware fitness circuit is modelled as a second reconfigurable layer over the field programmable gate array (FPGA) to configure the target combinational logic. A FPGA soft core processor evaluates the search algorithm and the best solutions are utilised for the hardware evolution. The experimentation results showed that convergence and evolution time of MA was faster compared to GA when the search space was large. Thus, proving MA is a better option for large search space evaluations for evolvable hardware architectures.

Online publication date: Mon, 16-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com