Difference in perforation rates of jetting tool nozzles and influencing factors Online publication date: Mon, 20-Apr-2020
by Jiarui Cheng; Yihua Dou; Ningsheng Zhang; Zhen Li; Lu Cui
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 24, No. 1, 2020
Abstract: Variations in the rates of hydraulic perforation among different jetting nozzles are common in gas well development, especially the multi-stage perforation of horizontal wells. A laboratory experiment was conducted to analyse the effects of flow rate, liquid viscosity and particle size on the perforation rate of a multi-nozzle structure under liquid-solid flow. The spatial distributions of particles and sample erosion rates were documented for multi-stage multi-angle nozzles with a variable difference in liquid properties and flow parameters using three particle sizes. Results showed that the difference in perforation rates among the nozzles was affected by the particle distribution inside the jetting tool and the energy of the particles ejected by each nozzle. Furthermore, the difference in perforation rates of nozzles with different jet angles was markedly affected by particle size, then by the flow rate and finally the liquid viscosity. [Received: April 15, 2018; Accepted: May 28, 2018]
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com