Development of a gas injection rate model for gas-drilling horizontal wells based on the onset of cutting-particle motion Online publication date: Mon, 20-Apr-2020
by Xiaohua Zhu; Biao Liu
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 24, No. 1, 2020
Abstract: Gas-drilling horizontal wells (GDHWs) can increase the rate of penetration in hard formations, help protect hydrocarbon reservoirs and enhance recovery efficiency. Given currently there are few effective models modified by reproductive experiments to predict the minimum gas injection rate in GDHWs. In this study, a new model is developed to predict the minimum gas injection rate in GDHWs based on the onset of cutting-particle motion, meanwhile a simulation equipment is designed to mimic a GDHW to understand the onset of cutting-particle motion and modify the model innovatively. The results provided by the modified model show that the minimum gas flow rate required to start cutting-particle motion rises with increases in the size and degree of flatness of the cuttings and the subsidence constraints of the borehole. Analysis using field data in the published article demonstrates that the modified model can accurately predict the minimum gas injection rate in GDHWs. [Received: March 16, 2018; Accepted: June 6, 2018]
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com