Data-driven pollution source location algorithm in water quality monitoring sensor networks Online publication date: Fri, 29-May-2020
by Xuesong Yan; Chengyu Hu; Victor S. Sheng
International Journal of Bio-Inspired Computation (IJBIC), Vol. 15, No. 3, 2020
Abstract: Water pollution prevention has been a widely concerned issue for the safety of human lives. To this end, water quality monitoring sensors are introduced in the water distribution systems. Due to the limited budget, it is impossible to deploy sensors everywhere but a small number of sensors are deployed. From the sparse sensor data, it is important, but also challenging, to find out the pollution source location. Traditional methods may suffer from local optimum trapping or low localisation accuracy. To address such problems, we propose a cooperative intelligent optimisation algorithm-based pollution source location algorithm, which is a data-driven approach in simulation-optimisation paradigm. Through open-source EPANET simulator-based experiments, we find out our proposed data-driven algorithm can effectively and efficiently localise the pollution location, as well as the pollution injection starting time, duration and mass.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com