Backtracking immune algorithm for continuous multi-objective optimisation Online publication date: Tue, 21-Jul-2020
by Ahmed Tchvagha Zeine; Emmanuel Pagnacco; Rachid Ellaia
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 10, No. 3, 2020
Abstract: In this paper, a new multi-objective immune algorithm (MOIAs) called BIAMO is proposed for tackling continuous multi-objective optimisation problems. It uses the updated archive to sort the non-dominated solutions of the Pareto front as well as the mutation and crossover operators of the backtracking search algorithm (BSA). Experimental results are produced for various benchmark problems and for a variety of engineering design problems. They show that, compared to the recent multi-objective optimisation evolutionary algorithms, the proposed algorithm improves not only the convergence capacity but also preserves the diversity of the population. In this paper, thirteen benchmark and engineering design problems are presented and the obtained results were compared with other well-known optimisers. The obtained results demonstrate that the proposed algorithm requires less number of function evaluations and in most cases gives better results compared to others considered algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com