Improving network lifetime and speed for 6LoWPAN networks using machine learning Online publication date: Thu, 01-Oct-2020
by Shubhangi Kharche; Sanjay Pawar
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 19, No. 4, 2020
Abstract: Wireless communication networks have an inherent optimisation problem of effectively routing data between nodes. This problem is multi-objective in nature, and covers optimisation of routing speed, the network lifetime, packet delivery ratio and overall network throughput. In this paper, a machine learning (ML)-based algorithm is proposed with an objective to minimise the network delay and increase network lifetime for 6LoWPAN networks based on RPL routing. The ML-based approach is compared with normal RPL routing in order to check the performance of the system when compared to recent routing protocols. It is observed that the proposed machine learning-based approach reduces the network delay by more than 20% and improves the network lifetime by more than 25% when compared to RPL-based 6LoWPAN networks. The machine learning approach also takes into account the link quality between the nodes, thereby improving the overall QoS of the communication system by selecting paths with minimal delay, minimal energy consumption and maximum link quality.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com