Effect of parameters and optimisation of rotary ultrasonic drilling through desirability and PSO
by Vikas Kumar; Hari Singh
International Journal of Manufacturing Research (IJMR), Vol. 15, No. 4, 2020

Abstract: In this paper, an attempt has been made to drill 'BK-7' using rotary ultrasonic machining (RUM). The effects of machining parameters namely feed, spindle speed and ultrasonic power were investigated on material removal rate (MRR) and chipping thickness (CT). Response surface methodology (RSM) was utilised for developing regression equations for output responses. The response observations were tested through analysis of variance (ANOVA) for recognising the significant input variables. The selected responses were found to be highly influenced by feed and exhibited opposite variation with increase in feed. Furthermore, the study also targets to improve the machining efficacy by optimising the machining parameters using desirability and particle swarm optimisation (PSO) approaches. Both the approaches were found to be equally viable. However, PSO exhibited an ease in obtaining the optimised solution with lesser time to cope up with industrial needs. [Submitted 15 April 2018; Accepted 23 December 2018]

Online publication date: Thu, 22-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com