Investigations on end-milling process by artificial neural network, finite element analysis and experimental studies
by P. Palanisamy, I. Rajendran, S. Shanmugasundaram
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 1, No. 2, 2006

Abstract: Chatter is a well known self excited-vibration between the tool and the workpiece. In this paper, Artificial Neural Network (ANN) has been used to predict the chatter-free vibrations Stability Lobe Diagram (SLD) for milling of AISI 1020 Steel, as it requires less computation time and is highly flexible. The occurrence of chatter for a particular combination of machining conditions is easily predicted using SLD plot. The SLD plot is validated using Fast Fourier Transform (FFT) analyser in a Universal Milling Machine. The results have shown a good agreement between chatter prediction and experimental values. The Nyquist Criterion is applied for studying the dynamic stability of the equivalent elastic system process. The result obtained from polar plots helps the designer to design the machine tool system having a minimum stiffness value of 4200 KN/mm in order to maintain the stability. Dynamic analysis has been performed using FEA to find the maximum deflection and stresses of cutter.

Online publication date: Fri, 06-Oct-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com