Deep learning-based approach for malware classification Online publication date: Mon, 24-May-2021
by Harisha Airbail; G. Mamatha; Rahul V. Hedge; P.R. Sushmika; Reshma Kumari; K. Sandeep
International Journal of Intelligent Defence Support Systems (IJIDSS), Vol. 6, No. 2, 2021
Abstract: Any program that exhibit furtive demonstrations against the interests of the PC client can be considered as a malware. These baleful programs can play out varieties of different capacities, for example, taking, encoding, or erasing dainty information, changing or commandeering centre processing capacities, and examining clients' computer action without their consent. Today, malware is utilised by both governments and black hat hackers, to take individual, financial, or business data. In this paper, put forward a strategy for arranging malware utilising profound learning procedures. Malware binaries are pictured as greyscale pictures, with the perception that for some malware families, the pictures having a place with a similar family show up fundamentally the same as in surface and design. A standard picture highlights grouping strategy is proposed. The exploratory outcomes give 97.45% arrangement classification on a malware database of 9,339 examples with 25 diverse malware families.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Defence Support Systems (IJIDSS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com