Estimation of surface roughness in a turning operation using industrial big data Online publication date: Thu, 27-May-2021
by Kaustabh Chatterjee; Jian Zhang; Uday Shanker Dixit
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 23, No. 3, 2021
Abstract: Surface roughness prediction in a turning process is of paramount importance. However, there is hardly any physics-based model that can predict it accurately. Recently, thanks to advancements in information technology, there are an ample amount of data in the industry. This article proposes a methodology to estimate surface roughness in turning based on industrial big data. An attempt has been made to extract and preserve the concise, useful information to reduce the burden on data storage. The proposed methodology predicts the lower, upper and most likely estimates of the surface roughness. A case study containing 35,000 datasets is simulated using a virtual lathe to demonstrate the efficacy of the methodology. The whole region of data is divided into 81 cells, and model fitting is carried out in each cell. The developed model based on industrial big data provides reasonable prediction of surface roughness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com