Opportunities and challenges of machine learning models for prediction and diagnosis of spondylolisthesis: a systematic review
by Deepika Saravagi; Shweta Agrawal; Manisha Saravagi
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 12, No. 2/3, 2021

Abstract: Applications of machine learning algorithms in healthcare domain gained immense popularity and attracted research communities in the last decade. Interdisciplinary collaboration leads to development of new models to investigate issues related to the spondylolisthesis (slippage of one vertebrae over another) with promising results and large potential. This paper summarises available machine learning models to detect and predict spondylolisthesis. It would be a valuable resource from modelling and application perspective. We extracted papers by systematic searching of databases: Scopus, PubMed, IEEE, Google Scholar, ResearchGate, Springer and Elsevier with preset inclusion-exclusion criteria. Articles were analysed as per title, abstract, and full-text review. Finally, opportunities and challenges in this area is discussed. We examined the specific models and frameworks employed, and the overall performance achieved according to the metrics used at each work under study. Our findings indicate that machine learning model can provide high accuracy and outperforms in existing image processing techniques.

Online publication date: Mon, 07-Jun-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com