DroidMD: an efficient and scalable Android malware detection approach at source code level
by Junaid Akram; Majid Mumtaz; Gul Jabeen; Ping Luo
International Journal of Information and Computer Security (IJICS), Vol. 15, No. 2/3, 2021

Abstract: Security researchers and anti-virus industries have speckled stress on an Android malware, which can actually damage your phones and threatens the Android markets. In this paper, we propose and develop DroidMD, a scalable self-improvement based tool, based on auto optimisation of signature set, which detect malicious apps in the market at source code level. A prototype has been developed tested and implemented to detect malware in applications. We implement and evaluate our approach on almost 30,000 applications including 27,000 benign and 3,670 malware applications. DroidMD detects malware in different applications at partial level and full level. It analyses only the applications code, which increase its reliability. Our evaluation of DroidMD demonstrates that our approach is very efficient in detecting malware at large scale with high accuracy of 95.5%.

Online publication date: Tue, 20-Jul-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com