Forecasting intraday stock price using ANFIS and bio-inspired algorithms Online publication date: Thu, 23-Sep-2021
by S. Kumar Chandar
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 25, No. 1, 2021
Abstract: The main focus of this study is to explore the predictability of stock price with variants of adaptive neuro-fuzzy inference system (ANFIS) and suggests a hybrid model to enhance the prediction accuracy. Two variants of ANFIS model are designed which includes genetic algorithm-ANFIS (GA-ANFIS) and particle swarm optimisation-ANFIS (PSO-ANFIS) to forecast stock price more accurately. The standard ANFIS is tuned employing GA and PSO algorithm. The experimental data used in this investigation are stocks traded per minute price of four companies from NSE. Sixteen technical indicators are calculated from the historical prices and used as inputs to the developed models. Prediction ability of the developed models is analysed by varying number of input samples. Numerical results obtained from the simulation confirmed that the PSO-ANFIS model has the potential to predict the future stock price more precisely than GA-ANFIS as well as other earlier methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com