A machine learning approach using random forest and LASSO to predict wine quality Online publication date: Tue, 12-Oct-2021
by Ioannis Athanasiadis; Dimitrios Ioannides
International Journal of Sustainable Agricultural Management and Informatics (IJSAMI), Vol. 7, No. 3, 2021
Abstract: Quality assessment is a key factor for the wine industry, where the aim is to meet consumers' needs/demands and promote sales. Quality assessment is usually performed by experts and it is a time-consuming and expensive process. This paper proposes an alternative assessment using machine learning methods, such as the least absolute shrinkage and selection operator (LASSO) and random forest to predict wine quality. Our data analysis is based on a real wine dataset provided by a well-known wine firm in Greece. For this purpose, we employ the LASSO method, which is particularly effective in selecting the best possible number of variables required. Additionally, the random forest method is used and its findings are contrasted to those derived by four different M.L. methods, namely, linear discriminant analysis (LDA), classification and regression trees (CART), k-nearest neighbours (kNN) and support vector machines (SVM), and using the well-known ten-fold cross-validation method. The results of our analysis show that the statistical technique of random forest proposed improves the accuracy of the prediction wine quality, up to almost 95%, compared to the rankings attributed by wine tasters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sustainable Agricultural Management and Informatics (IJSAMI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com