Performance measurement of various AI techniques for energy estimation and its optimisation using sensitivity analysis Online publication date: Thu, 07-Apr-2022
by Yashish Swami; Navjot Singh; Umang Soni
International Journal of Intelligent Enterprise (IJIE), Vol. 9, No. 2, 2022
Abstract: The objective of this research is to predict energy performance of a building (EPB) in terms of heating and cooling load by using various artificial intelligence (AI) techniques then measuring the corresponding strength of each input and its effect on the output in order to identify the most significant input from the lot by using sensitivity analysis. EPB can help in efficient construction of buildings as well as put a leash on dwindling natural resources and global warming. The various intelligent techniques used in this project are artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), ANFIS-GA (genetic algorithm) and ANFIS-PSO (particle swarm optimisation). In order to identify the most significant input, we are using a technique based on sensitivity analysis, which is called the connection weight algorithm. In the end, performance of the AI techniques is compared to select the best performing model.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Enterprise (IJIE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com