Deep learning-based distributed denial-of-service detection Online publication date: Thu, 07-Apr-2022
by Hanene Mennour; Sihem Mostefai
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 26, No. 1/2, 2022
Abstract: The nuisance of distributed denial-of-service (DDoS) attacks has extended unremittingly nowadays. Thus, guaranteeing system availability in this open-ended pandemic is a crucial task. In this work, we propose three different deep learning strategies as a network anomaly-based intrusion detection system (N-IDS) for a DDoS multi-classification task. We built a deep convolutional neural network (CNN), a stacked long short-term memory (S-LSTM) neural network which is a distinct artificial recurrent neural network (RNN), the third model is a hybridisation between CNN and LSTM. Then, we evaluated them on three up to date flow-based datasets: CICIDS2017, CICDDoS2019 and BoT-IoT benchmarks. The outcomes demonstrate that hybrid CNN-LSTM outperforms the existing state-of-the-art schemes in almost all the validation metrics.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com