Music emotion recognition method based on multi feature fusion
by Yali Zhang
International Journal of Arts and Technology (IJART), Vol. 14, No. 1, 2022

Abstract: There are some problems in music emotion recognition, such as large root mean square error of recognition results and low Pearson correlation coefficient. The music signal is divided into frames by window function, the noise in the music signal is reduced by the time domain endpoint detection, and the music signal is preprocessed. The characteristics of pitch change, gene rise and fall, speech speed and gene slope were extracted by Mehr frequency cepstrum coefficient. According to the extracted music emotion features, the multi-feature fusion kernel function is constructed. Based on the fusion results, the multi-level SVM emotion recognition model is built with the support vector mechanism to realise music emotion recognition. Experimental results show that the root mean square error of the proposed method is always within the range of 0.02, and the highest Pearson correlation coefficient is about 0.9.

Online publication date: Mon, 25-Apr-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Arts and Technology (IJART):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com