Adaptive chaotic equilibrium optimiser Online publication date: Mon, 30-May-2022
by Lin Yang; Jiayi Li; Runqun Xiong; Yuki Todo; Shangce Gao
International Journal of Bio-Inspired Computation (IJBIC), Vol. 19, No. 3, 2022
Abstract: Equilibrium optimiser (EO) is a new algorithm inspired by the control volume mass balance model. It uses particles with concentration as the search agents to search for the optimal solution. The equilibrium pool is an important part for EO to update particles. To improve the quality of the equilibrium pool, a scheme based on differential radius and adaptive chaotic local search is proposed. The resultant algorithm is termed as adaptive chaotic equilibrium optimiser (CEO). CEO improves the population diversity of the original algorithm and obtains a better balance between exploration and exploitation. The performance of CEO is verified based on a number of benchmark functions with 30 and 50 dimensions taken from IEEE CEC2017. In addition, four real-world optimisation problems are employed to further validate the effectiveness of CEO.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com