Neonatal heart disease screening using an ensemble of decision trees Online publication date: Mon, 11-Jul-2022
by Amir M. Amiri; Giuliano Armano; Seyedhossein Ghasemi
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 39, No. 2, 2022
Abstract: This paper is concerned with the occurrence of a heart disease specifically for the neonate, as those seriously affected may face an increased risk of death. In this paper, a novel computer-based tool is proposed for a medical centre diagnosis aimed at monitoring neonates who are potential vulnerable to heart disease. In particular, cardiac cycles of phonocardiograms (PCGs) are first pre-processed and then used to train an ensemble of decision trees (DTs). The classifier model consists of 12 trees, with bagging and hold-out methods used for training and testing. Several feature encoding methods have been experimented with to generate the feature space over which the classifier has been tested, including Shannon energy and Wigner bispectrum. On average 93.91% classification accuracy, 96.15% sensitivity and 91.67% specificity have been obtained from the given data, which has been validated with a balanced dataset of 110 PCG signals taken from healthy and unhealthy medical cases.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com