Dynamic facial expression recognition of sprinters based on multi-scale detail enhancement Online publication date: Fri, 05-Aug-2022
by Xiang Cao; Pengfei Li
International Journal of Biometrics (IJBM), Vol. 14, No. 3/4, 2022
Abstract: In order to solve the problems of low average gradient and long recognition time in traditional facial expression recognition method, a multi-scale detail enhancement method for facial dynamic expression recognition of sprint athletes is proposed. A principal component analysis method was used to establish the facial expression feature subspace of sprinters, to project and reduce the dimension of the facial dynamic expression feature vector of sprinters, and to obtain the low frequency information and high frequency information of the facial image of sprinters by bilateral filtering. The multi-scale details of expression are enhanced by using side suppression network model and improving image S curve. The feature vector of facial dynamic expression is input into support vector machine to recognise the facial dynamic expression of sprinter. Experimental results show that the average value of annoying gradient is about 98 and the shortest time s. is about 1.9.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com