Contactless non-invasive method to identify abnormal tongue area using K-mean and problem identification in COVID-19 scenario Online publication date: Wed, 07-Sep-2022
by Pallavi Pahadiya; Ritu Vijay; Kumod Kumar Gupta; Shivani Saxena; Ritu Tandon
International Journal of Medical Engineering and Informatics (IJMEI), Vol. 14, No. 5, 2022
Abstract: Due to the spread of COVID-19 all around the world, there is a need of automatic system for primary tongue ulcer cancerous cell detection since everyone do not go to hospital due to the panic and fear of virus spread. These diseases if avoided may spread soon. So, in such a situation, there is global need of improvement in disease sensing through remote devices using non-invasive methods. Automatic tongue analysis supports the examiner to identify the problem which can be finally verified using invasive methods. In automated tongue analysis image quality, segmentation of the affected region plays an important role for disease identification. This paper proposes mobile-based image sensing and sending the image to the examiner, if examiner finds an issue in the image, the examiner may guide the user to go for further treatment. For segmentation of abnormal area, K-mean clustering is used by varying its parameters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Medical Engineering and Informatics (IJMEI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com