Personalised recommendation of smart home products based on convolution neural network
by Xiaoyuan Luo; Jun Liu
International Journal of Product Development (IJPD), Vol. 26, No. 1/2/3/4, 2022

Abstract: In order to solve the problems of high recommendation error and long recommendation time in traditional personalised recommendation methods for smart home products, a new personalised recommendation method for smart home products based on convolution neural network is proposed. The attributes of smart home products are superimposed, and the square root of the attribute weight vector and all components are calculated. Determine the relationship between the attributes and important factors of smart home products to be recommended, and complete the weight calculation of smart home product recommendation. The personalised recommendation model of smart home products is constructed, and the convolution neural network is used to obtain the global optimal solution of the personalised recommendation model, so as to realise the personalised recommendation of smart home products. The experimental results show that the minimum error of the proposed method is about 0.3%, and the recommendation time is less than 15 s.

Online publication date: Wed, 07-Sep-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Product Development (IJPD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com