The impact on society of false news spreading on social media with the help of predictive modelling Online publication date: Tue, 18-Oct-2022
by Riktesh Srivastava; Jitendra Singh Rathore; Sachin Kumar Srivastava; Khushboo Agnihotri
International Journal of Knowledge and Learning (IJKL), Vol. 15, No. 4, 2022
Abstract: Nowadays, the interaction on social media for the latest news is an excellent source of information. Most of the time we read online news that may primarily appear authentic, but we cannot assure it because it does not happen every time. According to Gartner's published report, by 2022, most mature economies will get fake information than the correct information, mainly through social media. Fake news is one of the prevalent threats in our digitally linked world. This paper proposes a model for recognising fake news through the dataset from the Kaggle. There was 3,000 news collected from various social media sources in the dataset, of which 2,725 news is a training dataset and 275 for the test dataset. The fake and real news is classified and compared using five machine learning classification algorithms and analysed accordingly. The five classification algorithms are support vector machine (SVM), naïve Bayes, logistic regression, random forest, and neural networks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge and Learning (IJKL):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com