Research on athlete's wrong movement prediction method based on multimodal eye movement recognition Online publication date: Mon, 31-Oct-2022
by Luojing Wang
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 14, No. 4, 2022
Abstract: In order to solve the problems of large prediction error, long time consumption and large amount of interference data in the prediction results of traditional methods, an athlete's wrong movement prediction method based on multimodal eye movement recognition is proposed. Firstly, the spectral clustering algorithm is used to mine the wrong movements. Secondly, the least square method is used to improve the support vector machine, and the improved support vector machine is used to classify athletes' wrong movements according to the statistical characteristics of athletes' wrong movements. Finally, based on the classification results and the historical data of athletes' wrong movements, the trend of athletes' wrong movements is predicted by the multimodal eye movement recognition method to complete the prediction of athletes' wrong movements. The experimental results show that the method causes small prediction error, consumes short prediction time and has a low proportion of interference data.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com